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Abstract. We study the generalized n component model of a driven diffusive system with annealed random
drive in the large n limit. This non-equilibrium model also describes conserved order parameter dynamics
of an equilibrium model of ferromagnets with dipolar interaction. In this limit, at zero temperature a
saddle point approximation becomes exact. The length scale in the direction transverse to the driving field
acquires an additional logarithmic correction in this limit.

PACS. 64.60.Ht Dynamic critical phenomena – 75.40.Gb Dynamic properties (dynamic susceptibility,
spin waves, spin diffusion, dynamic scaling, etc.)

1 Introduction

In nature, a large class of phenomena are far-from-
equilibrium in origin. Unlike the equilibrium systems, de-
pending on the complexity and the relevant questions in-
volved, there are different ways to treat non-equilibrium
systems. In equilibrium, due to the random energy im-
parted by the environment (thermal noise), all possible
energy states are accessible and there is no net flow of
probability (i.e. no net current) from one configuration to
the other. As a result there is a straight forward way of
obtaining the free energy and hence the thermodynamic
properties by just summing over all the Boltzmann factors
exp[−E/KBT ] for all the states, where E is the energy of
the state. In general, although one may write down a mas-
ter equation describing the time evolution of the probabil-
ity of a system being in a state, in the large time limit, the
equilibrium dynamics ensures a Boltzmann distribution.
This behavior is preserved by the so called detailed bal-
ance principle. This shows up also in the Langevin equa-
tion which describes the time evolution of the degrees of
freedom (say e.g. the order parameter in a spin system,
or the height of a growing surface). In the equilibrium
case, the Langevin equation can be obtained from the
Hamiltonian representing all the relevant interactions of
the system. However, in the non-equilibrium cases, such
a description through a Hamiltonian is not possible due
to one or more terms. These terms are purely of non-
equilibrium origin and appear due to, say, a finite driving
force in the driven dynamics of particles [1] or in random
deposition of particles in the case of crystal growth [2].
There are non-equilibrium systems where detailed balance
may also hold good. In these cases the dynamics reduces
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to the equilibrium dynamics of a system described with
appropriate Hamiltonian [2].

These aspects of non-equilibrium dynamics are present
in different variants of driven diffusive systems (DDS) [1]
where particles with diffusive dynamics have biased hop-
ping due to a driving force in a particular direction. In
the case of fixed time independent driving force, a formu-
lation of the Langevin equation through a Hamiltonian is
not possible due to the term responsible for the drive. This
is not necessarily true for all the driven systems. In partic-
ular, we shall later be concerned with a driven system with
an annealed random drive where the problem effectively
reduces to the equilibrium dynamics of a specific magnetic
system. In general, without the driving force, the equilib-
rium system is like a lattice gas where particles randomly
occupy lattice sites and also due to a nearest neighbor
attraction a particle prefers to have its next neighboring
site occupied by another particle. In this sense the equi-
librium static properties are the same as that of the Ising
model with a ferromagnetic interaction. Even though, the
dynamics, unlike the spin case, is different due to the to-
tal particle number conservation in the lattice gas, the
static properties of the two models are the same due to
the equivalence of canonical and grand-canonical ensem-
bles. With a finite driving force [3], the dynamics of lattice
gas is significantly different from the equilibrium order pa-
rameter conserving dynamics. Three key features, such as,
the boundary condition, particle number conservation and
the driving force together affect the dynamics in a non-
trivial way and as a result one observes generic power law
correlation far above the criticality and anisotropy in the
exponents of different correlation functions [1].

Due to the time dependent probability distribution,
and lack of detailed balance, many questions remain unre-
solved for this system. Although in the steady state, where



552 The European Physical Journal B

the distribution settles to a time independent form, one
can write down a local detailed balance form for the tran-
sition rates in the Master equation, obtaining the physical
properties from this is, in practice, difficult. However, even
working with very small lattices, certain interesting fea-
tures can be observed [4,5]. For example, on a small size
half filled lattice, in the ground state, unlike the equilib-
rium case, one can see a strip-like occupied region in the
presence of a large driving force. A careful analysis of the
internal energy fluctuation and specific heat also reveals
new consequences of the driving force [1].

In view of the complications, it is, therefore, often use-
ful to adopt different approximation schemes or numeri-
cal techniques. Since in many cases the interest is mostly
on long wavelength and long time features, the continuum
formulation in terms of the Langevin equation comes quite
handy. The continuum formulation provides a fruitful ba-
sis for performing the mean field type calculations or field
theoretic renormalization group analysis [6] with the latter
being especially successful in explaining the new features
at the critical point. In this scheme, the existence of a
non-equilibrium stable fixed point that governs the new
universal properties, anisotropic non-Gaussian scaling ex-
ponents associated with it, is clearly observed. The fact
that far above the criticality, the two point or three point
correlation exhibits a power law behavior, can be directly
shown using the above continuum formulation and averag-
ing with exp[−J ] with J as the dynamic functional. This
weight factor essentially plays a role that is analogous to
the Boltzmann weight for the equilibrium system.

Although significant progress has been made in under-
standing the properties far above and at criticality, the
situation below criticality is relatively unclear. Below the
critical temperature, one would expect phase separated
occupied and unoccupied regions provided the filling is
not too far away from the half filling where one would re-
main out of the coexistence regime. In the presence of the
driving force, the shape of the coexistence curve changes
from the equilibrium situation [7] and also the shape of the
phase separated regions gets distorted. The basic ques-
tions that still remain are related to these aspects. Al-
though numerical simulations show that the particle oc-
cupied regions are somewhat elongated in the direction of
the field, sufficient analytical progress is yet to be made.

Along with this development, several variants of this
simple case of driven lattice gas have appeared in order
to understand more realistic phenomena in nature. One
simple choice of the boundary condition is the periodic
one in both transverse and longitudinal direction. In that
case the system looks like a torus with the driving field,
possibly a uniform electric field looping around it. To ob-
tain such a situation in laboratory, one would require a
magnetic flux increasing linearly in time. Therefore due
to these practical purposes, a demand for more abundant
situations with non-uniform drive or different boundary
conditions was obvious. Thus came up a simpler but more
realistic model of DDS with annealed random drive [8,9].
Interestingly, this model exhibits new universal properties
that are different from the uniformly driven Ising model.

In this paper, we are interested in studying a driven
diffusive system with annealed random drive with n com-
ponent order parameter in the large n limit. In this limit
the problem is exactly solvable at zero temperature. It is
known that the large time behavior of a system, quenched
below the critical temperature, is characterized by the
equal time structure factor

c(k, t) = 〈φi(k, t)φi(−k, t)〉 = Lα(t)F (kL(t)), (1)

where L(t) ∼ t1/z, with z being the dynamic exponent,
represents the characteristic size of the correlated regions
growing with time [10]. In the above definition, the sub-
script i denotes the component of the order parameter field
φ. This scaling law is preserved in the case of quenching
of a system with a non-conserved order parameter. How-
ever, this scaling form is not maintained in a system with a
conserved order parameter. In the latter case one has two
length scales, obeying two different scalings [11,12]. While
the growth of one length scale with time is governed by
the usual dynamic exponent, for the other length scale, an
additional time dependence appears. The reason for such
multi-scaling is understood to be the non-commutativity
of the large n and large t limits [13].

2 Model

In the lattice gas systems with a fixed total number of par-
ticles, there is an underlying continuity equation obeyed
by the particle density ρ, ∂tρ = −∇J , where J is the cur-
rent. In the absence of the driving force, the current can be
expressed as the gradient of the chemical potential −λ∇µ,
where λ is the transport coefficient, µ = δH/δρ, with H as
the appropriate lattice gas Hamiltonian. With an attrac-
tive interaction among the particles, the complete descrip-
tion of the dynamics involves only one field, the particle
density which plays the role of the order parameter. Near
equilibrium, the equation of motion for the conserved dy-
namics of such attracting particles can be written using
the continuity equation and the Hamiltonian, expressed in
terms of the local magnetization φ(x, t) = 2ρ(x, t)− 1, as

H(φ) =
∫

ddx{1
2

(∇φ)2 +
τ

2
φ2 +

u

4!
φ4}. (2)

The drive, which is actually responsible for the far-from-
equilibrium behavior, gives rise to an additional cur-
rent, which must vanish if there is no hole or no par-
ticle. Thus, the simplest choice for the current may be
JE = 4ρ(1 − ρ)E = (1 − φ2)E, where E is the strength
of the driving field. The system is anisotropic due to the
driving force in a particular direction, henceforth denoted
by z. In the equation of motion, this z direction and the
transverse d − 1 dimensional space are distinguished by
different coefficients [1] as shown below

∂tφ(x, t) = λ{(τ⊥ −∇2)∇2φ+ (τ‖ − α‖∂2)∂2φ

− α×∂2∇2φ+
u

3!
(∇2φ3 + χ∂2φ3) +E∂φ2}

− (∇ξ + ∂ζ). (3)
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Here and in the following discussion, ∇ in general extends
over the d−1 dimensional space and ∂ denotes the deriva-
tive with respect to z only. The last two terms in the
Langevin equation originate from the usual noisy part of
the current and have short range correlations both in space
and time with variances n⊥ and n‖. The coefficients asso-
ciated with the derivatives with respect to transverse or
parallel coordinates have subscripts ‖ and ⊥ respectively.
As the critical temperature is approached, the most real-
istic choice of parameters is τ‖ > 0 and τ⊥ → 0 [14]. In
fact, it can be explicitly shown that while the transverse
direction, and hence τ⊥, remain unaffected by the driving
force, τ‖ is renormalized upwards due to the driving force
and remains uniform for the whole system.

The focus of the present paper is on an annealed ran-
dom drive which has a correlation 〈E(x, t)E(x′, t′)〉 =
σδ(x − x′)δ(t − t′). A well-known starting point for the
dynamics is to write down the dynamic functional J that
involves the Martin-Siggia-Rose response field φ̃ [15]. Af-
ter averaging out the drive, and ignoring all the redundant
or irrelevant terms, the generating functional can be writ-
ten as

Jb =
∫

dt ddxλ
{
φ̃(x, t)[λ−1∂t − (τ −∇2)∇2 − ∂2]φ(x, t)

− u
3!
φ̃∇2φ3 + φ̃∇2φ̃

}
. (4)

Since the non-Gaussian interaction term has no longitu-
dinal operator, it does not affect τ‖, which, as a result,
has been considered to be a constant (unity) in (4). The
coefficient of the last term in the curly bracket has also
been set to unity by suitable reparametrization. For con-
venience we have denoted τ⊥ in this equation by τ .

It is now appropriate to point out that there exists a
direct connection between the driven system and uniaxial
ferromagnets with dipolar interaction [8,16,17]. The gen-
erating functional can be written in the detailed balance
form as

Jb =
∫
{φ̃∂tφ− φ̃λ∇2[

δHd
δφ
− φ̃]}, (5)

where

Hd[φ] =
∫
k

1
2
φ(−k)S−1

0 (k)φ(k)

+
u

4!

∫
k1,k2,k3

φ(k1)φ(k2)φ(k3)φ(−k1 − k2 − k3),
(6)

with S−1
0 (k) = k−2

⊥ [τk2
⊥ + k4

⊥ + k2
‖]. This Hamiltonian

represents the static system of uniaxial ferromagnet with
dipolar interaction [16,17]. Therefore studying this driven
system with annealed random drive also implies study-
ing the order parameter conserved dynamics of uniaxial
ferromagnets.

3 Results

Our starting point for the large n analysis is essentially
an n component generalization of the Hamiltonian Hd ap-
pearing in the detailed balance form above. To proceed

further, we start with the Langevin equation which rep-
resents the dynamics of the driven diffusive system of our
interest as well as the conserved dynamics of the uniaxial
dipolar system

∂φi
∂t

= ∇α[∇α
∂H
∂φi

+ ζα(x, t)], (7)

where ζα(x, t) represents the short range correlated Gaus-
sian noise. Here α (= 1, 2, ...d) stands for the dimension
of the space and i (= 1, ....n) denotes the order parame-
ter component. For the present discussion, we shall restrict
ourselves to the zero temperature situation where we need
not bother about the noise term.

In Fourier space the Langevin equation becomes

∂φi
∂t

= (−τk2
⊥ − k4

⊥ − k2
‖)φi −

u0

3!
a(t)k2

⊥φi, (8)

where φ2 =
∑n
j=1 φ

2
j = n〈φ2

i 〉 = a(t). Solving (8), we
obtain

φi(k, t) = φi(k, 0)e−(τk2
⊥+k4

⊥+k2
‖)t−(u0/3!)k2

⊥b(t), (9)

with b(t) =
∫ t

0 a(t′)dt′. Therefore

〈φi(x, t)φi(x, t)〉 =
∫

dk
(2π)d

∆

n

× e−(2τk2
⊥+2k4

⊥+2k2
‖)t−(u0/3)k2

⊥b(t), (10)

where we have used the initial condition

〈φi(k, 0)φj(k′, 0)〉 =
∆

n
δijδ(k + k′). (11)

Therefore we have

a(t)=
∆

(2π)d

∫
dd−1k⊥dk‖e

−(2τk2
⊥+2k4

⊥)t−2k2
‖t−(u0/3)k2

⊥b(t)

=
∆

(2π)d
(
π

2t
)1/2 2π(d−1)/2

Γ [(d− 1)/2]

∫
dk⊥kd−2

⊥ e−(2τ ′k2
⊥+2k4

⊥)t,

(12)

where τ ′ = τ + u0
6
b(t)
t . Substituting ( 1

τ ′ )
1/2k⊥ = x, this

equation simplifies to

a(t) =
∆

(2π)d
(
π

2t
)1/2 2π(d−1)/2

Γ [(d− 1)/2]
(τ +

u

6
b(t)
t

)(d−1)/2

×
∫

dx xd−2e−(x2+x4)2tτ ′2 . (13)

To solve this equation, we shall consider different dimen-
sions separately. At d = 2, the saddle point is at the origin.
Therefore we obtain

a(t)2 = B0(τ +
u

6
b(t)
t

)/t, (14)

where B0 = ∆2/4π. Differentiating this equation once, we
have

2t2a(t)
da(t)

dt
=
uB0

6
a(t) +B0τ − 2ta(t)2. (15)
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The numerical solution of this equation in terms of three
constants c1, c2 and c3 is

a(t) = c1 +
c2
t1/2

+ c3
log t
t
· (16)

In the large time limit, the dominant time dependence is
of the form a(t) ∼ t−1/2. Finally, since the factor 2tτ ′2
in the argument of the exponential approaches infinity as
t → ∞, the saddle point approximation turns out to be
an exact one.

Let us consider d = 3. Starting with (13), we again
replace the integral by the maximum value of the integral.
This occurs at

x2 =
−2c0 ±

√
4c20 + 16c0

8c0
, (17)

where c0 = 2τ ′2t. As t → ∞, one can approximate x2 ∼
1/2c0. Therefore in the large time limit,

a(t) =
∆

4(2π)3/2

1
t

exp[−(1/2 + 1/4c0)]. (18)

Therefore, at d = 3, a(t) scales as 1/t at large time. To
obtain the relevant length scale, we rewrite φi(k, t) as

φi(k, t) = φi(k, 0)e−k
2
‖te[(τt+(u/3!)b(t))2/4t]{1−((k⊥/kL)2+1)2}.

(19)

Apart from the length scale in the parallel direction grow-
ing as L‖ ∼ t1/2, we find that the length scale in the direc-
tion perpendicular to the driving force acquires a logarith-
mic correction in addition to the expected scaling behav-
ior. At d = 3, the length scale in the transverse direction
scales with time as

L⊥ ∼
t1/4

(1 + u ln t/6t1/2)1/2
' t1/4 for t→∞. (20)

This is somewhat different from the multiscaling observed
before, where there are two different scaling lengths. Here
due to the anisotropy originally present in the system,
the transverse and longitudinal length scales L⊥ and L‖
respectively, have different scaling properties with time
even at the Gaussian level. L⊥, due to the non-Gaussian
interaction, relevant only in the transverse direction, has
modified scaling behavior due to a logarithmic correction
in addition to the scaling expected at the Gaussian level.

As expected, the scaling of L‖ remains unaltered from the
Gaussian level.

To summarize, we have studied the large n limit of a
generalized n component driven diffusive model with an-
nealed randomness at zero temperature. This model also
corresponds to the order parameter conserved dynamics
of uniaxial ferromagnets with dipolar interaction. This
model is exactly soluble in the large n limit. The scaling
of the length scale transverse to the drive is only modified
due to an additional logarithmic correction. This is quite
different from the multiscaling behavior observed before
in conserved dynamical models.

I thank H.W. Diehl for the hospitality at Universität
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